Sub-Scale Fast Cookoff Test Results

Approved for public release; distribution is unlimited.

K.P. Ford, N.C. Davis, A.D. Farmer, E.B. Washburn, A.I. Atwood, K.J. Wilson, P.O. Curran, J.P. Abshire, M.L Shewmaker, Z.P. Goedert, and C.J. Wheeler Naval Air Warfare Center Weapons Division China Lake, California

> J. Covino Department of Defense Explosives Safety Board Alexandria, Virginia

Purpose

- Repeatability of test method
- Thermal Stimulus Effects
- Scaling
 - Sub-scale to full scale comparison
- Effect of Ullage
 - Time to Reaction
 - Violence of Reaction

Introduction

- Progress on effort to develop a subscale alternate test protocol for external fire test used in final hazards classification
- Supports efforts to develop a controlled fast cookoff test
 - DDESB
 - Air Force
 - Army
 - Navy

Background

- Hazard Classification Assignment of HD 1.1 through 1.4
 - Liquid fuel/external fire test
- Insensitive Munitions (IM)
 - Fast cookoff
- Move to harmonize the testing

System Level Tests

- Expensive
- Late in development phase
 - Difficult to make changes
- Few tests
 - Results may be misleading

Why Bother?

- External fire test must be performed on full scale item in its shipping configuration
 - Problem with large solid rocket motors
 - Cost of the asset + test (>\$30 million US)
 - Hazard associated with test performance
 - Difficult to secure propulsive item in its shipping container
 - Large amounts of liquid fuel required
 - Real estate required for test site
 - Environmental Concerns
 - Single test on a probabilistic event
 - Results may be misleading

Thermal Stimulus

Fuel Fire

Thermal Stimulus

- Fuel fires are difficult to describe and impossible to control
 - Alternate test should be controllable
- Flux in fuel fire varies from 20 to 400 kW/m² (SNL)
 - Credible accident scenario
 - 50, 75 and 100 kW/ m² have been selected
 - Lower flux and longer times represent conservative approach

Controlled Heat Flux Device

Insertion Assembly

Test Article

Test Articles

- Two types of Test Articles
 - Tactical Rocket Motor
 - 0.3175 cm Wall thickness
 - Stainless Steel
 - Composite
 - Large Diameter Rocket Motor
 - 1.27 cm Wall thickness
 - Aluminum
 - Composite
 - Thermal Properties consistent with configuration
 - EPDM insulator with HTPB liner

Test Matrix

Test Asset	Propellant Geometry	Propellant	Test Location
0	End Burner		CHFD
1	1.27 cm bore	1.3 Fast Burning	
2		Propellant	
3			
4	3.81 cm bore	Fielded Propellant	
5		1.3 Fast Burning Propellant	Liquid Fuel Fire

Test Article

Interior Schematic

Thermocouple Response of Asset 3

Results

Thermal Stimulus

Thermal Stimulus

- Time to Ignition
 - CHFD
 - 141-145 seconds
 - Liquid Fuel Fire
 - 136 seconds
 - 8 seconds (6%) Difference
- Internal Thermal Couple Temperature
 - Similar temperature response

Fragmentation

CHFD

4 Metal Fragments Recovered Liquid Fuel Fire

3 Metal Fragments Recovered

Scaling

Scaling Comparison

- CHFD
 - Similar Thermal Properties → Full Scale
 - Time to Reaction
 - 126.18 seconds
- Full Scale Liquid Fuel Fire
 - 148 seconds
- Difference of 22 seconds (15%)

Thermocouple Response of Fielded Propellant with 1.5" Bore

EXPLO

Modeling

Fluent Modeling after 145 sec

Power Flux into Propellant

Time Versus Energy Flux into Propellant

Model Prediction of 145 sec

Test Asset	Propellant Geometry	Propellant	Time to Reaction (sec)	% Difference from Model
0	End Burner		123.6	14.76
1	1.27 cm bore	1.3 Fast Burning	128.6	11.31
2	3.81 cm bore	Propellant	144.6	0.28
3	3.81 cm bore		141	2.76
4	3.81 cm bore	Fielded Propellant	126.18	12.98
	•	•		NAV AIR-

Modeling Reaction Violence

Summary

- Thermal Apparatus designed to produce 20-200 kW/m²
- Thermal Stimulus
 - Reaction and time to reaction similar between CHFD and Liquid Fuel Fire
- Fielded propellant similar thermal and time to reaction to full scale test
- Predict time to reaction within 15%
- Reaction violence still examining
 - Fragment Energy segregate reactions

Future Plans

- Perform CHFD methodology on 5 types of hazard response
 – Assess Reaction Violence
- Continue Validation Testing
- Refine Model
 - Material expansion
 - Continued Development of Mechanical Response Model

Extra Slides

Combustor at Remote Site

Calibration Device

DHRARTMENT OF DEFENSE

Combustor Calibration – 135 kW/m²

Flux Level Variability 1 m Pool Fire

Internal Thermocouple

CHFD

Liquid Fuel Fire

Repeatability

Test Asset	Propellant Geometry	Propellant	Time to Reaction (sec)
2	1 5" boro	1.3 Fast	144.6
3	1.5 DOLE	Burning	141

EXPloses **Thermocouple Response of 1.3 Fast Burning Propellant with 1.5" Bore** TMENTOFD 200 -TC9_2 180 160 -TC10_2 140 Mary Mary Mary ΰ Temperature (deg 120 -TC11_2 wanther the want of the second s 100 TC5 3 80 60 WWWWWWWWWWWWWWWWWWWWW -TC8 3 40 20 -TC11_3 0 1.5 0.5 2 2.5 0 1 Time (min) NAV AIR

Fragment Repeatability

Test Asset 2

Test Asset 3

